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Abstract

This paper investigates how machine learning can solve inverse prob-
lems in the context of image classification, focusing on reconstructing
input features from classification outputs. This project explored compu-
tational strategies that merge the mathematical foundations of inverse
problems with the practical methods of computer vision. By combin-
ing partial differential equation (PDE) modeling and optimization-based
deep learning, the work demonstrates how model parameters and image
features can be estimated efficiently and stably, even in the presence of
noise.

1 Notation

Functions can take multiple inputs; for example, if we have a vector z € R"™,

x = (x1,x2,...,2,). For a function f(x), f : R®™ — R, partial derivatives are
written as 0; f(x) = %—if).

flxy) =32 +2y, Ouf(z,y) =3, 0yf(x,y)=2
For multivariate functions f : R™ — R, the gradient, divergence, and Lapla-
cian are defined as

Vf(x) = (@1f (@), 0nf(x)) €RT,
Veu@) =) dwi(e), —Af(e) =3 9 f().

The Laplacian represents the sum of second derivatives of f with respect to
spatial coordinates.

2 The Forward Problem: Heat Equation

The heat equation describes the temporal evolution of temperature (or concen-
tration) in a medium:

O —alAu=0 on Qx|0,1], (1)



with initial condition u(z, 0) = ug(z) and thermal diffusivity @ > 0. Solving the
forward problem means determining u(z,t) given « and ug.
Discretizing 0;u and Aw using finite differences yields a numerical system:

uk L ok

I, —alLuf =0,

where L is the discrete Laplacian matrix:

This can be advanced in time using an explicit or implicit scheme such as Euler’s
or Runge-Kutta (RK2/Heun’s) methods.

3 The Inverse Problem

Inverse problems seek unknown parameters or inputs that produce a desired
output under a known forward model. For the heat equation, the goal is to
recover « or ug from observed final states u(zx, 1):

Ou—aAu =0, u(z,0)=wug, u(x,1)= uops.
We define the forward operator
9(@) = ua(z,1),
and the measured data as
Uobs = g(a) + (),

where 7 represents additive Gaussian noise. Recovering « from uqps constitutes
an ill-posed problem—small perturbations in u.ps can lead to large variations
in a. Regularization and data-driven models are therefore required to ensure
stability.

4 Machine Learning Formulation

Machine learning provides a data-driven way to approximate the inverse map-
ping g~!. Given training pairs (uops, @), we can learn a model

& = Np(Uobs),
where Ny denotes a neural network parameterized by 6. The training objective

minimizes

L(0) = [No(uobs) — all3.



For problems without direct supervision, a hybrid physics-informed loss com-
bines data fidelity with the PDE residual:

L(0) = lJtobs — g(No(tobs) I3 + M|Oru — No (uobs) Aul[3.

This structure constrains the learned inverse mapping to respect the physical
model while leveraging data for regularization.

5 Inverse Problems in Image Classification

The inverse problem framework extends naturally to computer vision. Let F :
R" — AKX~ be a classifier mapping image = to class probabilities p = F(z).
Given a target class or feature representation p, the goal is to reconstruct a
plausible image & such that F(Z) ~ p:

T = argmin Liaek (F (), p) + AR (), (2)
z€[0,1]™

where R(x) serves as a regularization term. Common choices include:
e /5 priors: penalize large pixel magnitudes,
e Total Variation (TV): promote spatial smoothness,
e Learned priors: restrict reconstructions to a generative model’s manifold.

Optimization-based inversion can be solved via gradient descent or through
latent-space optimization in a pretrained generator G(z). In the latter case, one
seeks

2" = argmin Loask (F(G(2)),5) + Bll=]%, & =G(2").
z

This approach mirrors classical inverse problem regularization, where G implic-
itly encodes prior knowledge of valid images.

6 Experiments and Findings

Experiments were performed on MNIST and CIFAR-10 using convolutional neu-
ral networks. The inverse problem was tested under three conditions:

1. Reconstruction from target class probabilities,

2. Reconstruction from intermediate feature maps,
3. Parameter estimation under noisy measurements.
Results showed that:

e Simple pixel-based optimization reconstructs recognizable patterns but is
highly sensitive to noise.



e TV regularization improves stability and edge definition, analogous to
diffusion-based smoothing.

e Generative priors, such as VAEs or GANs, yield the most realistic recon-
structions, preserving semantic structure.

e A hybrid approach combining PDE regularization with learned priors pro-
vides the best balance between fidelity and stability.

7 Discussion

The experiments highlight a fundamental parallel between physical inverse prob-
lems and feature reconstruction in neural networks. Both domains rely on regu-
larization to constrain ill-posed mappings. The diffusion term aAw in the heat
equation acts analogously to the TV prior in image reconstruction, smoothing
solutions while preserving important structure.

Moreover, integrating physics-informed loss terms into neural architectures
offers a pathway toward interpretable, stable models that generalize well. This
approach bridges classical numerical analysis with modern data-driven learning.

8 Conclusion

This research explored how machine learning can address inverse problems for
image classification and PDE-based systems. By uniting forward modeling,
optimization, and neural representation learning, we demonstrated that input
features or model parameters can be reconstructed from partial or noisy out-
puts. The work establishes a foundation for using deep learning to solve inverse
problems across physics and vision, emphasizing interpretability, stability, and
data efficiency.
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