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The amount of rotation needed to set the clock to a valid time is determined by the

position of the minute hand and the angle between the hour hand and the previous hour

notch on the clock.

We must have both the hour and the minute hand represent the same time in minutes

that have passed since the last top of the hour. For example, if the hour hand is pointing

at 2 and the minute hand is pointing at 3, then as we rotate the hands, we will ensure that

the minutes passed since 2:00 on the hour hand are the same as the minutes passed 2:00 on

the minute hand. Since the minute hand starts at 15 minutes past 2, when it is rotated, its

elapsed minutes will be added to 15.

Let the hour hand’s position be h degrees clockwise from the closest hour notch to it,

and let m be the minute hand position in degrees clockwise from the 12-notch. To ensure

that all values are minimal, h and m will be taken modulo 360. Thus, when solving for the

rotation, we will solve for the degrees clockwise modulo 360.

Since both the hour and minute hands must represent the same number of minutes passed

since the previous hour, we can represent this value in terms of h, m, and x, where x is the

clockwise rotation needed to create a valid time.

Each degree in the hour hand corresponds to 2 minutes since 30 degrees represent an

hour. Thus, the minutes passed since the previous top of the hour in terms of h is 2h+ 2x.

Each degree in the minute hand corresponds to 1
6
minutes since there are 360 degrees in 60

minutes.

2(h+ x) =
m+ x

6

Expanding and simplifying:

12h+ 12x = m+ x

x =
m− 12h

11
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The expected value for the hour hand is 15 degrees since the range is between 0 and 30

degrees, as it is placed between the notches uniformly. Similarly, the expected value of the

minute hand is 180 degrees, since its range is between 0 and 360 degrees uniformly.

Plugging these values into the formula for x:

x =
180− 12(15)

11
= 0
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The proof will be divided into two main cases based on the position of point P inside the

quadrilateral. We will also consider a special case where P lies on one of the diagonals.

Case 1: Point P inside △ABC

Assume that point P lies within △ABC. We will use angle chasing to establish relationships

between the angles in the triangles formed by point P .

Let:

∠BAP = ∠CAD = x,

∠BCP = ∠ACD = y.

Since PB ⊥ PD, the sum of angles in △APC must satisfy:

(45◦ − 2x) + (135◦ − 2y) + (x+ y + ∠B) = 180◦.

Simplifying, we find:

x+ y = ∠B.

This result shows that the angles x and y depend directly on the angle at vertex B. If

PB ⊥ PD, it follows that x+ y = 45◦, which implies that AC ⊥ BD.

Case 2: Point P inside △ACD

Now, consider the case where point P lies within △ACD. Using similar angle chasing

techniques, we define:

∠CAD = x,

∠PAC = 45◦ − 2x,

∠PCA = 135◦ − 2y.
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The sum of angles in △APC again simplifies to:

x+ y = ∠B.

Thus, we observe the same relationship as in Case 1, confirming that PB ⊥ PD implies

AC ⊥ BD in this case as well.

Point P on AC or BD

If point P lies directly on one of the diagonals, say AC, then ∠BAP = ∠CAD = 0◦. In this

scenario, it is simple to verify the conditions manually:

PB ⊥ PD =⇒ AC ⊥ BD.

It is known that AC ⊥ BD, which implies that quadrilateral ABCD is cyclic. In the

context of triangle△ABC, the circumcircle will be equidistant from each of the vertices A, B,

and C, with the distance representing the radius of the circumcircle. This property extends

to any combination of three vertices from the four points in the cyclic quadrilateral. Since the

circumcircle of a triangle is uniquely determined by the circumcenter, which is equidistant

from each vertex of the triangle, it follows that the circumcircle of any triangle formed by

three of the four points will coincide with the circumcircle of the cyclic quadrilateral. If the

distances AP = BP = CP = DP , the point P would be the circumcenter and, consequently,

lie at the center of the circumcircle.

By applying angle chasing, we can derive results involving the circle and the four isosceles

triangles, which allows us to demonstrate thatAC ⊥ BDwill always imply that PB ⊥ PD.

A significant triangle in this context is △APC, where PAC = 45− 2x = PCA = 135− 2y.

By manipulating the relevant constants and variables, we obtain y = 45 + x.

Nevertheless, there remain several key angles that must be determined to prove PB ⊥

PD. To address this, we introduce the intersection point Q and define a new variable j as
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Figure 2: Angle Chase

the measure of ∠AQB.

By considering only the necessary angles for angle chasing, we can quickly deduce that

∠PBD = 135◦−x and ∠PDB = j−45◦. Since these angles are part of an isosceles triangle,

it follows that PQ = PQ, confirming that PB ⊥ PD if and only if AC ⊥ BD

As stated earlier, we also address the case where P lies on AC. In this case, ∠PAC = 0◦

and ∠PCA = 0◦, which allows us to readily conclude that PB ⊥ PD by further angle

chasing.

Angle chasing show in diagram
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2a ∗ 5b − 3c = 1

2a ∗ 5b = 1 + 3c

We can create cases for the coefficients in the equation.

Case 1: a and b are NOT 0 From examining the digits place we know that c ≡ 2 (mod

4) The smallest solution for this case (1, 1, 2) .

We can create a recursive function for 2a ∗ 5b f1 = 10

fx = 81(fx−1 − 1) + 1

We claim that fx ≡ 2 (mod 4). This can be proved by via induction.

Base case: f1 = 10 ≡ 2 (mod 4)

Assume fx ≡ 2 (mod 4)

fx+1 = 1(2− 1) + 1 ≡ 2 (mod 4)

We claim that fx ≡ 0 (mod 2). This can be proved by induction.

f1 ≡ 0 (mod 2).

Assume fx ≡ 0 (mod 2)

fx+1 = 1(0− 1) + 1 ≡ 0 (mod 2).

We now know that there is only one factor of 2 in 2a ∗ 5b so a = 1 2 ∗ 5b = 1 + 3c

We aim to prove that the equation

2 · 5b = 1 + 3c,

where b > 0 and c ≥ 0, has finitely many solutions using infinite descent.

We check small values of b and c:
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For b = 1:

2 · 51 − 1 = 10− 1 = 9 ⇒ 3c = 9 ⇒ c = 2.

Thus, (b, c) = (1, 2) is a solution.

Thus, (b, c) = (1, 2) are solutions for small values of b. We now proceed to show that no

solutions exist for b > 1 using infinite descent.

Suppose (b, c) is a solution to the equation 2 · 5b − 1 = 3c with b > 1 and c > 2. We aim

to derive a smaller solution.

Since 5 ≡ 2 mod 3, we have 5b ≡ 2b mod 3. Therefore:

2 · 5b ≡ 2 · 2b mod 3.

If b is odd, 2b ≡ 2 mod 3, so 2 · 5b ≡ 1 mod 3, which implies:

1 + 3c ≡ 1 mod 3 ⇒ 3c ≡ 0 mod 3.

If b is even, 2b ≡ 1 mod 3, so 2 · 5b ≡ 2 mod 3, which implies:

1 + 3c ≡ 2 mod 3 ⇒ 3c ̸≡ 0 mod 3.

This is a contradiction because 3c must be divisible by 3. Hence, b must be odd.

Powers of 3 mod 5 cycle as 3, 4, 2, 1. Since 5b ≡ 0 mod 5, we have:

2 · 5b ≡ 0 mod 5 ⇒ −1 ≡ 3c mod 5 ⇒ 3c ≡ 4 mod 5.

Thus, c must satisfy 3c ≡ 4 mod 5, restricting c to specific values in the cycle.

Suppose b > 1. Rewriting the equation:

3c = 2 · 5b − 1.
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Let c′ be the largest integer such that:

3c
′ ≤ 2 · 5b − 1.

Define the difference:

d = (2 · 5b − 1)− 3c
′
.

Then:

d = 2 · 5b − 1− 3c
′
,

where 0 < d < 3c
′
. This gives:

3c = 3c
′
+ d.

Since d < 3c
′
, we obtain a smaller instance of the original equation:

3k = 2 · 5b′ − 1,

where b′ < b and k < c.

This process of finding smaller solutions can be repeated indefinitely, reducing b and c

at each step. Since b and c are non-negative integers, this infinite descent cannot continue

indefinitely. Eventually, we reach b = 1 , corresponding to the base case:

(b, c) = (1, 2).

Case 2: a = 0 a cannot equal 0 because then 5b − 3c would equal an odd number which

is not possible.

Case 3: b = 0

By examining the last digits of 2a and 3c we can see that the valid cases for the solutions

modulo 4 are: (1, 0, 0), (2, 0, 1), (3, 0, 3).
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In all of these cases we have that 5b = 1 and 2a − 1 = 3c

We aim to prove that the equation 2a − 1 = 3c, where a ≥ 1 and c ≥ 0, has only finitely

many solutions.

If c = 0, then

2a − 1 = 1 =⇒ 2a = 2 =⇒ a = 1.

Thus, (a, c) = (1, 0) is a solution. If c = 1, then

2a − 1 = 3 =⇒ 2a = 4 =⇒ a = 2.

Thus, (a, c) = (2, 1) is a solution. For c ≥ 2, , we will use infinite descent to show that no

solutions exist for a > 2 and c > 1.

Assume that (a, c) is a solution to the equation 2a − 1 = 3c with a > 2 and c > 1.

We will show that this implies the existence of a smaller solution, eventually leading to a

contradiction.

The equation can be rearranged as:

2a = 3c + 1.

If c is even, let c = 2k. Then:

3c = (3k)2,

and the equation becomes:

2a = (3k − 1)(3k + 1).

Since 3k − 1 and 3k +1 are consecutive even numbers, their product 2a implies that both

factors must be powers of 2. Let:

3k − 1 = 2m and 3k + 1 = 2n,
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where m < n and m+ n = a. Subtracting the two equations:

(3k + 1)− (3k − 1) = 2 =⇒ 2n − 2m = 2.

Factoring out 2m:

2m(2n−m − 1) = 2.

This implies:

2n−m − 1 = 1 =⇒ n−m = 1.

Thus:

n = m+ 1 and a = m+ n = 2m+ 1.

Substituting back:

3k − 1 = 2m =⇒ 3k = 2m + 1.

This gives a smaller instance of the original equation:

2m − 1 = 3k
′
,

where m < a and k′ = k. This provides a strictly smaller solution (m, k′).

By repeating this process, we generate a strictly smaller solution at each step. Since a

and c are positive integers, the descent cannot continue indefinitely. Eventually, we reach

a = 1 or c = 0, corresponding to the base cases:

(a, c) = (1, 0) or (2, 1).

Using infinite descent, we have shown that the only solutions to the equation 2a− 1 = 3c

are:

(a, c) = (1, 0) and (2, 1).

Page 5 of Problem 5



Student: Anushka Polapally
Username: K1330129
ID#: 41365 USA Mathematical Talent Search

Year Round Problem
36 3 5

Thus the only valid ordered solutions are:

(a, b, c) = (1, 0, 0), (2, 0, 1) and (1, 1, 2) .
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